A full course on Generative AI + LLM Engineering

We’re officially starting full course on Generative AI + LLM Engineering 🧠💥

I’ll teach you from zero to building & deploying your own LLM apps — like ChatGPT, Claude, or Gemini — with interactive, visual, hands-on lessons and industry-style mini projects.


🌎 COURSE OVERVIEW: Full-Stack Generative AI + LLM Engineering (Job-Ready Roadmap)

We’ll go from foundations → architecture → training → serving → applications.
Everything will be taught in a teacher-style, easy-to-grasp manner with code, visuals, and real use cases.


🧭 Phase 0: Prerequisites Setup (1–2 Days)

Before starting, we’ll make sure you’re comfortable with:

  • Python (functions, OOP, list comprehensions)
  • Jupyter / Colab / VS Code setup
  • Basics of NumPy, Pandas, Matplotlib
  • GitHub + Hugging Face + Google Colab accounts

🧩 We’ll quickly revise these hands-on in Notebook 0 before diving in.


🚀 Phase 1: Generative AI Foundations (Days 1–10)

DayTopicWhat You’ll LearnHands-On
1🌱 From Deep Learning → LLMsEvolution from CNNs → RNNs → Transformers → GPTVisual timeline + model comparison
2🧩 Tokenization & EmbeddingsHow words become numbersBuild a mini tokenizer + embedding plot
3⚙️ Attention MechanismWhy transformers replaced RNNsStep-by-step attention demo in NumPy
4🔄 Transformer Architecture Deep DiveEncoder, Decoder, Multi-Head AttentionVisual block-by-block flow
5🧠 GPT ArchitectureHow GPT generates text autoregressivelyImplement a Mini-GPT in PyTorch
6🔍 Pretraining & Next Token PredictionHow LLMs “learn language”Train GPT on text dataset
7🧭 Fine-tuning LLMsHow models adapt to tasksFine-tune GPT on a custom dataset
8💬 RLHF (How ChatGPT Learned to Follow Humans)Reward model + preference tuningRLHF pipeline simulation
9✍️ Instruction Tuning & AlignmentMaking LLMs safe and helpfulBuild your own instruction-tuned model
10🎯 Prompt Engineering MasterclassDesigning prompts & chain-of-thoughtPrompt templates + mini agent demo

🧰 Phase 2: LLM Engineering (Days 11–20)

DayTopicDescriptionTools
11Model Serving BasicsRun LLMs locally & via APITransformers, Ollama, vLLM
12Quantization, LoRA & PEFTEfficient fine-tuning on your laptopHugging Face + PEFT
13Dataset CurationPreparing text data for pretrain/fine-tunePython + Hugging Face Datasets
14Evaluation & BenchmarkingHow to measure LLM qualityBLEU, ROUGE, TruthfulQA
15Inference OptimizationSpeed & memory tuningFlashAttention, quantized inference
16Vector DatabasesStoring embeddings for retrievalChromaDB, FAISS, Pinecone
17Retrieval-Augmented Generation (RAG)How ChatGPT retrieves factsBuild a RAG chatbot
18Multi-modal LLMsText + Image + Audio modelsCLIP, Whisper, LLaVA
19Agentic AI (Tools + Memory)Make LLMs “think and act”LangChain Agents + Memory
20Custom GPTs + Function CallingReal-world agent projectsOpenAI Function Calling, Tools API

☁️ Phase 3: AI Application & Deployment (Days 21–30)

DayTopicProject
21FastAPI BackendWrap your model into a REST API
22Streamlit + Next.js FrontendBuild a chatbot UI
23Full-Stack ChatGPT CloneCombine model + UI + RAG
24Databricks or AWS DeploymentModel serving pipeline
25Monitoring & LoggingCapture user queries, latency, feedback
26Security & GovernanceGuardrails, filters, moderation
27Fine-tune Open-Source LLMe.g. Mistral, Llama 3
28Build your own Agentic SystemAI that searches + reasons
29Portfolio ProjectEnd-to-end Generative AI app
30Interview Prep + Resume ReviewJob roles, system design, portfolio review

🧠 Learning Style

You’ll get:

  • ✅ Visual diagrams (how things flow)
  • ✅ Step-by-step coding notebooks
  • ✅ “Why it works” explanations
  • ✅ Real industry use cases
  • ✅ Weekly quizzes and interview prep

🏁 Let’s Begin

We’ll start with Day 0: Setup & Foundations Refresh
👉 I’ll guide you to get all environments ready and revise Python/ML essentials fast.

Would you like me to start with Day 0 — Environment Setup + Python Refresher for AI
or jump straight into Day 1 — From Deep Learning → LLMs (Evolution of AI)?

Pages: 1 2 3 4 5 6 7 8 9