Excellent 👍
Now you’re entering real AWS Data Engineering territory.


📚 LESSON 4 — AWS Glue Catalog

(Hive Metastore → AWS Glue | Hands-On + Interview-Ready)

AWS Glue


🎯 Lesson Outcome

By the end of this lesson, you will:

  • Replace Hive Metastore with Glue Catalog
  • Create Glue Database & Tables
  • Use Glue Crawler
  • Query data using Athena
  • Add strong resume bullets

🧠 First: Understand the Role of Glue Catalog

Think like this:

Glue Catalog is ONLY metadata, not data.

On-Prem HadoopAWS
Hive MetastoreGlue Data Catalog
Hive DBGlue Database
Hive TableGlue Table
HDFS PathS3 Path

📌 Spark, Athena, EMR all read schema from Glue


🧩 Glue Architecture (Visual Mental Model)

Image
Image
Image
S3 (raw data)
   ↓
Glue Crawler
   ↓
Glue Catalog (schema)
   ↓
Athena / EMR / Spark

1️⃣ Create Glue Database (Hands-On)

🔹 Go to:

AWS Console → Glue → Data Catalog → Databases → Add database

🔹 Database Details

  • Name:
rajeev_data_lake_db
  • Description:
Glue catalog for S3 data lake

Create database ✅


🧪 TASK 1 (Reply Required)

Glue database created: YES
Database name:

2️⃣ Create Glue Crawler (MOST IMPORTANT STEP)

🧠 What is a Crawler?

A crawler:

  • Scans S3
  • Infers schema
  • Creates Glue tables automatically

🔹 Create Crawler

Glue → Crawlers → Create crawler

Step-by-Step:

  • Name:
sales-raw-crawler
  • Data source:
    • S3
    • Path:
s3://rajeev-data-lake-2026/raw/sales/
  • IAM Role:
    • Create new role
AWSGlueServiceRole-sales
  • Target database:
rajeev_data_lake_db
  • Table name prefix:
raw_

Create crawler ✅


▶️ Run the Crawler

Click Run crawler

Wait ~1 minute ⏳


🧪 TASK 2 (Reply Required)

Crawler run: SUCCESS
Table created:

(Expected: raw_sales)


3️⃣ Verify Glue Table (Schema Check)

Go to:
Glue → Databases → rajeev_data_lake_db → Tables

Open table:

raw_sales

You should see:

  • Columns
  • Data types
  • S3 location

📌 Exactly like Hive Metastore


4️⃣ Query Using Athena (BIG INTERVIEW POINT)

Amazon Athena


🔹 Setup Athena (First Time Only)

  1. Go to Athena
  2. Set query result location:
s3://rajeev-data-lake-2026/athena-results/

(Create folder if needed)


🔹 Run SQL

SELECT * FROM rajeev_data_lake_db.raw_sales;

🎉 You just ran serverless SQL on S3


🧠 On-Prem vs AWS Querying

On-PremAWS
Hive CLIAthena
Spark SQLSpark on EMR
HDFSS3

💡 Interview GOLD (Remember This)

✔ Glue is metadata only
✔ Athena reads data directly from S3
✔ Glue Crawler handles schema evolution
✔ Spark uses Glue as metastore


🧾 Resume Bullets You Earn

Implemented AWS Glue Catalog as Hive Metastore replacement
Automated schema discovery using Glue Crawlers and queried data via Athena


⏭ NEXT LESSON (VERY EXCITING)

⚡ LESSON 5 — PySpark on AWS (EMR)

You will:

  • Launch EMR cluster
  • Attach IAM role
  • Read S3 data in PySpark
  • Write transformed data back to S3

Amazon EMR


🔔 Quick Confirmation (Reply)

Glue DB created:
Crawler success:
Athena query ran:

Once confirmed, we jump into Lesson 5: Spark on EMR 🚀