🚀 Lesson 3 — Pydantic Deep Dive (FastAPI’s Superpower)
Pydantic is the heart of FastAPI. It gives:
✔ Automatic data validation
✔ Type safety
✔ Error handling
✔ Clean models
✔ Performance (written in Rust, ultra-fast)
By the end of this lesson, you will be able to build industry-quality request/response schemas.
🎯 What You Will Learn Today
✔ Basic & advanced Pydantic models
✔ Optional fields
✔ Default values
✔ Input validation
✔ Nested models
✔ Lists & dictionaries
✔ Enums
✔ Validators
✔ Response models
✔ Industry-grade model design
Let’s begin. 🔥
🧠 1. Basic Pydantic Model (Warm-up)
from pydantic import BaseModel
class User(BaseModel):
name: str
age: int
email: str
FastAPI automatically:
- Validates type
- Provides documentation
- Generates schemas
🎯 2. Optional Fields & Default Values
from typing import Optional
class User(BaseModel):
name: str
age: int
email: Optional[str] = None
This means:
- email can be missing
- email defaults to
None
🔒 3. Field Validation (Constraints)
Use Field() for validation rules.
from pydantic import BaseModel, Field
class Product(BaseModel):
name: str = Field(..., min_length=3)
price: float = Field(..., gt=0)
stock: int = Field(default=0, ge=0)
Validations:
- name: at least 3 chars
- price: must be > 0
- stock: must be ≥ 0
🧩 4. Nested Models
Models inside models.
class Address(BaseModel):
city: str
pincode: int
class User(BaseModel):
name: str
address: Address
Send JSON:
{
"name": "Rajeev",
"address": {
"city": "Bangalore",
"pincode": 560001
}
}
Pydantic validates deeply. 🔥
📦 5. Lists & Dictionaries
class Order(BaseModel):
items: list[str]
quantities: dict[str, int]
JSON example:
{
"items": ["apple", "banana"],
"quantities": {"apple": 3, "banana": 5}
}
🎨 6. Enums (Industry Standard for Fixed Choices)
from enum import Enum
class Status(str, Enum):
active = "active"
inactive = "inactive"
banned = "banned"
class User(BaseModel):
name: str
status: Status
Input must be:
- “active”
- “inactive”
- “banned”
🧪 7. Custom Validation with Validators
You can write your own validation logic.
from pydantic import BaseModel, validator
class User(BaseModel):
name: str
age: int
@validator("age")
def validate_age(cls, v):
if v < 18:
raise ValueError("User must be 18+")
return v
🛠 8. Response Models (Very Industry Important)
FastAPI uses response models to control output fields and hide sensitive info.
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class User(BaseModel):
name: str
age: int
password: str
class UserPublic(BaseModel):
name: str
age: int
@app.post("/users", response_model=UserPublic)
def create_user(user: User):
return user
Even if the user sends a password:
- Response will not include it
- Only
nameandageshown
Production-grade security. ✔
🏭 9. Industry Example — E-Commerce Order Schema
class Product(BaseModel):
id: int
name: str
price: float
class Customer(BaseModel):
id: int
name: str
email: str
class Order(BaseModel):
order_id: int
customer: Customer
items: list[Product]
total_amount: float = Field(..., gt=0)
This is used in:
- Swiggy
- Amazon
- Flipkart
- Any e-com microservice
🧠 10. Sub-models & Partial Updates (PATCH)
class UserUpdate(BaseModel):
name: Optional[str] = None
age: Optional[int] = None
If a field is missing → don’t update it.
Used for PATCH operations.
📌 Lesson 3 Summary
You now know:
✔ Optional fields
✔ Nesting
✔ Field validations
✔ Custom validators
✔ Enums
✔ Response models
✔ Lists/dicts
✔ Partial update models
This makes you ready for:
- Real backend systems
- AI/ML API design
- E-commerce microservices
- Enterprise APIs
🚀 Ready for Lesson 4 — AsyncIO, Concurrency & High Performance?
Lesson 4 covers:
✔ async vs sync
✔ await, tasks, coroutines
✔ parallel HTTP calls
✔ long-running processes
✔ FastAPI concurrency tricks
✔ Industry performance patterns
Shall I continue with Lesson 4 now?