Perfect 👍
Given how deeply you approached Strings and Lists, a Deep Python Dictionary (dict) tutorial will take your Python fundamentals to an interview + real-world production level.
Below is a complete “Deep Python Dictionaries in 3 Days” roadmap, with:
- 🔬 Very deep internal concepts
- 🧠 Patterns & mental models
- 💻 All important problems (basics → advanced)
- 📌 Interview-oriented insights
- 🧾 A compact cheat sheet at the end
🧠 Deep Python Dictionaries in 3 Days
From CPython internals → algorithmic mastery
📅 OVERVIEW
| Day | Focus |
|---|---|
| Day 1 | Dictionary Internals, Hashing, Core Operations |
| Day 2 | Dictionary-Based Algorithms & Frequency Patterns |
| Day 3 | Advanced Patterns, Nested Dicts, Optimization & Design |
🩵 DAY 1 – Dictionary Internals (VERY DEEP)
1️⃣ What is a Dictionary REALLY?
A Python dictionary is:
- A hash table
- Mapping:
key → value - Average-case O(1) lookup, insert, delete
Internally (CPython):
PyDictObject
├── hash table (array of indices)
├── entries array (key, value, hash)
└── resizing logic
2️⃣ Hashing – The Core Concept
🔹 What happens when you do:
d[key] = value
Steps:
hash(key)is computed- Hash is mapped to an index using modulo
- Collision handled using open addressing
- Key comparison using
==(not hash)
🔹 Immutable Keys Rule (VERY IMPORTANT)
Valid keys:
int,float,str,tuple (of immutables)frozenset
Invalid keys:
list,dict,set
Why?
hash(key) MUST NOT change
🔹 Example
d = {}
d[(1, 2)] = "ok" # valid
d[[1, 2]] = "no" # ❌ TypeError
3️⃣ Dictionary Mutability & References
d1 = {"a": 1}
d2 = d1
d2["b"] = 2
print(d1) # {'a': 1, 'b': 2}
Same object → same memory.
Copy safely:
d2 = d1.copy() # shallow copy
d3 = dict(d1)
4️⃣ Shallow vs Deep Copy (CRITICAL)
import copy
d = {"a": [1, 2]}
shallow = d.copy()
deep = copy.deepcopy(d)
shallow["a"].append(3)
print(d) # {'a': [1, 2, 3]}
Why?
- Shallow copy copies references
- Deep copy copies recursively
5️⃣ Dictionary Resizing (Hidden Performance Detail)
- Dict grows when ~66% full
- Resizing is expensive → avoid frequent inserts in tight loops
Optimization tip:
If size known beforehand → build dict once, avoid repeated resizing.
6️⃣ Dictionary Views (Dynamic!)
d = {"a": 1, "b": 2}
keys = d.keys()
d["c"] = 3
print(keys) # reflects change
Views are live, not snapshots.
🧠 DAY 1 – Core Dictionary Operations
Creation Patterns
d = {}
d = dict()
d = {"a": 1}
d = dict(a=1, b=2)
Safe Access
d.get("x", 0)
Update Patterns
d["a"] = 10
d.update({"b": 20})
Delete
del d["a"]
d.pop("b", None)
d.clear()
🧩 DAY 1 – Practice Problems (Foundational)
1️⃣ Count Occurrences of Each Element
def count_occurrences(lst):
freq = {}
for x in lst:
freq[x] = freq.get(x, 0) + 1
return freq
2️⃣ Most Frequent Element
def most_frequent(lst):
freq = {}
for x in lst:
freq[x] = freq.get(x, 0) + 1
return max(freq, key=freq.get)
3️⃣ Check If Two Dicts Are Equal
def dict_equal(d1, d2):
return d1 == d2
4️⃣ Invert a Dictionary
def invert_dict(d):
return {v: k for k, v in d.items()}
5️⃣ Merge Two Dictionaries
def merge_dicts(d1, d2):
return {**d1, **d2}
💎 DAY 2 – Dictionary Algorithm Patterns
1️⃣ Frequency Map Pattern (MOST IMPORTANT)
Used in:
- Anagram
- Majority element
- Mode
- Histogram problems
Valid Anagram
def is_anagram(s, t):
if len(s) != len(t):
return False
freq = {}
for ch in s:
freq[ch] = freq.get(ch, 0) + 1
for ch in t:
if ch not in freq:
return False
freq[ch] -= 1
if freq[ch] < 0:
return False
return True
First Non-Repeating Character
def first_unique_char(s):
freq = {}
for ch in s:
freq[ch] = freq.get(ch, 0) + 1
for i, ch in enumerate(s):
if freq[ch] == 1:
return i
return -1
Group Anagrams
from collections import defaultdict
def group_anagrams(words):
groups = defaultdict(list)
for w in words:
key = tuple(sorted(w))
groups[key].append(w)
return list(groups.values())
2️⃣ Hash Map for Index Tracking
Two Sum
def two_sum(nums, target):
seen = {}
for i, n in enumerate(nums):
if target - n in seen:
return [seen[target - n], i]
seen[n] = i
Longest Subarray with Sum K
def longest_subarray_k(nums, k):
prefix = 0
seen = {0: -1}
best = 0
for i, n in enumerate(nums):
prefix += n
if prefix - k in seen:
best = max(best, i - seen[prefix - k])
if prefix not in seen:
seen[prefix] = i
return best
3️⃣ Prefix Sum + Dict Pattern
Subarray Sum Equals K
def subarray_sum(nums, k):
prefix = 0
freq = {0: 1}
count = 0
for n in nums:
prefix += n
count += freq.get(prefix - k, 0)
freq[prefix] = freq.get(prefix, 0) + 1
return count
🔥 DAY 3 – Advanced Dictionary Concepts
1️⃣ defaultdict vs dict
from collections import defaultdict
d = defaultdict(int)
d["a"] += 1
Avoids:
if key not in d: d[key] = 0
2️⃣ Counter Internals
from collections import Counter
Counter("banana")
Internally still a dict → but optimized in C.
3️⃣ Ordered Dict (Python ≥3.7)
- Dicts preserve insertion order
- No need for
OrderedDictanymore (mostly)
4️⃣ Nested Dictionaries
d = {
"user1": {"age": 25, "city": "NY"},
"user2": {"age": 30, "city": "LA"}
}
Access safely:
d.get("user1", {}).get("age")
5️⃣ Dictionary as Cache (Memoization)
def fib(n, memo={}):
if n in memo:
return memo[n]
if n <= 1:
return n
memo[n] = fib(n-1, memo) + fib(n-2, memo)
return memo[n]
6️⃣ Dictionary Comprehensions
{k: v*v for k, v in enumerate(range(5))}
Conditional:
{k: v for k, v in d.items() if v > 10}
7️⃣ Sorting Dictionaries
sorted(d.items(), key=lambda x: x[1])
🧾 DICTIONARY CHEAT SHEET
Creation
d = {}
d = dict(a=1)
Access
d[key]
d.get(key, default)
Update
d[key] = value
d.update(other)
Delete
del d[key]
d.pop(key)
Iteration
for k in d:
for v in d.values():
for k, v in d.items():
Patterns
| Pattern | Dict Use |
|---|---|
| Frequency map | Counting |
| Index map | Two Sum |
| Prefix sum | Subarrays |
| Cache | Memoization |
| Grouping | Anagrams |
| Nested | Structured data |
🎯 Interview Golden Rules
- Dict lookup is O(1) average
- Keys must be immutable
- Use
get()to avoid KeyError - Use
defaultdictto simplify logic - Avoid modifying dict while iterating
- Prefer dict over list for membership tests
🏁 What You’ve Achieved
You now understand:
- Dict internals & hashing
- Mutability & copying
- Frequency, prefix sum & grouping patterns
- Nested dicts & caching
- Interview-grade dict problems
If you want, next we can do:
- Deep Sets in 2 Days
- Deep Tuples & NamedTuple
- Python Memory Model (Objects, GC, Ref Counting)
- Data Structures Interview Pack (Lists + Dicts + Sets combined)
Just tell me what to continue 🚀