Perfect — this fits exactly with your current learning trajectory (SQL → PySpark → AWS → AI).
Below is a true Python Programming Mastery Course (30 Days) designed for deep conceptual + CPython-level understanding, not tutorial-style fluff.

This is the kind of Python knowledge expected from:

  • Senior Data Engineers
  • Backend Engineers
  • AI / ML Engineers
  • System Design + Interview Whiteboard rounds

You’ll understand how Python actually works internally, not just how to use it.


🧠 Python Programming Mastery (30 Days)

Goal: Absolute mastery of Python fundamentals
Level: Beginner → Advanced → Internals → Interview Mastery
Focus: CPython internals, memory model, execution model, edge cases


🧩 COURSE PHILOSOPHY (IMPORTANT)

We will learn Python in 5 layers:

  1. Language layer – syntax, constructs
  2. Runtime layer – how Python executes code
  3. Memory layer – objects, references, GC
  4. CPython internals – bytecode, interpreter, data structures
  5. Interview layer – traps, puzzles, optimization tricks

📅 DAY-WISE MASTER PLAN


🟢 DAY 1 — What Is Coding? What Is Python REALLY?

Concepts

  • What is programming? (machine-level view)
  • Compiled vs Interpreted languages
  • Why Python is not truly interpreted
  • History of Python & philosophy (PEP 20)
  • Where Python fits vs C / Java / Scala

Deep Dive

  • What happens when you run python file.py
  • Role of:
    • Parser
    • Compiler
    • Interpreter
    • Virtual Machine

Interview Traps

print(type(type(int)))

🟢 DAY 2 — Python Execution Model (Inside CPython)

Concepts

  • Source Code → Bytecode → Execution
  • .pyc files
  • Python Virtual Machine (PVM)
  • Stack-based execution

CPython Level

  • Bytecode instructions (LOAD_FAST, CALL_FUNCTION)
  • Disassemble code using dis

Interview Gold

def f():
    return 1

print(f.__code__.co_consts)

🟢 DAY 3 — Variables, Names, References (CRITICAL DAY)

Concepts

  • Variables are names, not containers
  • Object identity vs value
  • id(), memory addresses
  • Mutability vs Immutability

CPython Internals

  • Reference counting
  • Object header (ob_refcnt, ob_type)

Interview Traps

a = 256
b = 256
print(a is b)   # why True?

a = 257
b = 257
print(a is b)   # why False?

🟢 DAY 4 — Python Memory Management + Garbage Collection

Concepts

  • Stack vs Heap
  • Reference Counting
  • Cyclic garbage
  • gc module

Deep Dive

  • Why Python leaks memory in long-running apps
  • When __del__ is dangerous

Interview Trap

a = []
a.append(a)

🟢 DAY 5 — Built-in Data Types Overview (Big Picture)

  • Everything is an object
  • type, object, NoneType
  • Truthiness rules
  • Singleton objects

🟢 DAY 6 — Integers & Floats (Internal Implementation)

CPython

  • Arbitrary precision integers
  • Why 10**100 works
  • Float precision (IEEE 754)

Interview

print(0.1 + 0.2 == 0.3)

🟢 DAY 7 — Strings (Immutable, Powerful, Dangerous)

Internals

  • String interning
  • Unicode (UTF-8, UTF-16)
  • Why slicing is O(n)

Interview Traps

s = "hello"
s += "world"   # what really happens?

🟢 DAY 8 — Lists (Dynamic Arrays Internals)

CPython Implementation

  • Over-allocation strategy
  • Why append is amortized O(1)
  • Shallow vs deep copy

Interview

a = [[1]] * 3
a[0][0] = 100
print(a)

🟢 DAY 9 — Tuples (Why They Exist)

  • Immutability benefits
  • Hashability
  • Tuple packing/unpacking

🟢 DAY 10 — Sets & Frozensets (Hash Tables)

Internals

  • Hash functions
  • Collision handling
  • Why sets are unordered

Interview

print({1, True, 1.0})

🟢 DAY 11 — Dictionaries (Most Important Structure)

CPython Dict Internals

  • Open addressing
  • Hash table resizing
  • Order preservation (Python 3.7+)

Interview

d = {True: "yes", 1: "no"}
print(d)

🟢 DAY 12 — Control Flow Deep Dive

  • if/else internals
  • for vs while
  • break, continue, pass

Bytecode comparison: for vs while


🟢 DAY 13 — Functions Internals

Concepts

  • Stack frames
  • Local vs Global namespace
  • LEGB rule

CPython

  • PyFrameObject
  • Call stack

🟢 DAY 14 — Arguments & Function Tricks

  • Positional-only (/)
  • Keyword-only (*)
  • *args, **kwargs
  • Default argument trap

Interview

def f(x=[]):
    x.append(1)
    return x

🟢 DAY 15 — Closures & Decorators (Brain Stretch)

Internals

  • Free variables
  • Cell objects
  • Function wrapping

🟢 DAY 16 — Lambda & Functional Programming

  • map, filter, reduce
  • Why Python isn’t purely functional
  • When lambdas hurt readability

🟢 DAY 17 — Modules, Imports & sys.path

Internals

  • Import caching
  • __name__ == "__main__"
  • Circular imports

🟢 DAY 18 — OOPS Fundamentals (Python Style)

  • Class vs Instance
  • __init__
  • Attribute lookup order

🟢 DAY 19 — OOPS Internals (VERY IMPORTANT)

CPython

  • __dict__
  • Method Resolution Order (MRO)
  • type() metaclass

🟢 DAY 20 — Inheritance, Composition, Mixins

Interview

class A: pass
class B(A): pass
class C(B, A): pass   # MRO?

🟢 DAY 21 — Dunder Methods (Magic Methods)

  • __new__ vs __init__
  • Operator overloading
  • Context managers

🟢 DAY 22 — Exceptions Internals

  • Exception hierarchy
  • try/except cost
  • Custom exceptions

🟢 DAY 23 — Iterators & Generators

Internals

  • __iter__, __next__
  • Generator state machine

🟢 DAY 24 — Comprehensions & Lazy Evaluation

  • List vs Generator comprehension
  • Memory tradeoffs

🟢 DAY 25 — Files, I/O & OS Interaction

  • File buffering
  • Text vs Binary
  • Context managers

🟢 DAY 26 — Concurrency Model

VERY IMPORTANT

  • GIL explained properly
  • threading vs multiprocessing
  • asyncio internals

🟢 DAY 27 — Performance & Optimization

  • Time complexity in Python
  • Profiling
  • __slots__
  • C extensions overview

🟢 DAY 28 — Writing Pythonic Code

  • Idioms
  • Anti-patterns
  • Clean code principles

🟢 DAY 29 — Python Interview Mastery

Tricky Questions (LOTS)

  • is vs ==
  • Mutable default arguments
  • Late binding closures
  • Object identity
  • Edge-case outputs

🟢 DAY 30 — Python Internals Revision + Whiteboard Drill

  • Explain Python execution on whiteboard
  • Memory model drawing
  • CPython architecture
  • Real interview simulations

🎯 WHAT YOU’LL BE ABLE TO DO AFTER THIS

✅ Explain Python execution line by line
✅ Predict output of tricky code instantly
✅ Write memory-efficient Python
✅ Debug production issues faster
✅ Crack senior-level Python interviews