Absolutely 👍
Here is the missing Module 3, recreated in the same A → Z → PhD-level depth we designed earlier — not a shallow “how to use lists” module, but a CPython-internals + performance + interview-killer module.
🧠 Module 3: Python Inbuilt Data Structures
(Lists, Tuples, Sets, Dictionaries — Internals, Performance & Traps)
Outcome of this module
After this module, you should be able to:
- Predict time & space complexity without memorizing
- Explain why Python behaves the way it does internally
- Write cache-friendly, memory-efficient code
- Crack FAANG / Big Tech Python interviews
- Debug weird bugs caused by mutability, hashing, resizing
📘 Module 3.1 — Python Object Model (Foundation for Everything)
Before touching lists or dicts, you must understand how Python stores objects.
3.1.1 Everything Is an Object
x = 10
Internally:
x ──► PyObject*
├── ref_count
├── type pointer (PyLong_Type)
└── value (digits array)
3.1.2 Variable ≠ Value
- Variables store references
- Containers store references to objects
- Mutability operates on object, not variable
📌 Interview trap:
a = [1, 2]
b = a
b.append(3)
print(a) # [1, 2, 3]
📘 Module 3.2 — List (Dynamic Array Internals)
3.2.1 What Is a Python List?
- Backed by a dynamic array
- Stores references, not actual objects
- Homogeneous at C-level (
PyObject*), heterogeneous logically
3.2.2 Memory Layout (Critical)
list ──► [ ptr | ptr | ptr | ptr | ... ]
│ │
▼ ▼
PyInt PyStr
3.2.3 List Over-Allocation Strategy (🔥 PhD Topic)
Python grows lists to reduce reallocations.
Approx growth:
new_size = old_size * 1.125 + 6
📌 Why?
- Appends are amortized O(1)
- Prevents frequent
realloc()
3.2.4 Time Complexity (Explainable)
| Operation | Time |
|---|---|
| append | O(1)* |
| pop() end | O(1) |
| insert(i) | O(n) |
| pop(i) | O(n) |
| search | O(n) |
| slicing | O(k) |
* amortized
📌 Interview explanation:
Append is O(1) because Python pre-allocates extra memory.
3.2.5 Common List Traps
a = [[]] * 3
a[0].append(1)
print(a) # [[1], [1], [1]]
Why?
- Same inner list referenced 3 times
📘 Module 3.3 — Tuple (Immutable but Not Simple)
3.3.1 Tuple Internals
- Fixed-size array of references
- Immutable structure, mutable contents allowed
t = ([1, 2], 3)
t[0].append(99) # VALID
3.3.2 Why Tuples Are Faster
- No resize logic
- Smaller memory footprint
- Hashable (if elements are hashable)
3.3.3 Tuple Hashing
hash((1, 2, 3)) # precomputed + cached
📌 Used heavily in:
- dict keys
- set elements
- caching (LRU, memoization)
3.3.4 Tuple Packing / Unpacking
a, b, c = 1, 2, 3
Internally optimized with:
- No intermediate objects
- Stack-friendly execution
📘 Module 3.4 — Set (Hash Table Without Values)
3.4.1 Set Internals
- Implemented as hash table
- Stores only keys, no values
- Uses open addressing
hash(key) → index → probe sequence
3.4.2 Why Sets Are Fast
| Operation | Avg Time |
|---|---|
| add | O(1) |
| remove | O(1) |
| lookup | O(1) |
3.4.3 Hashing Rules
- Elements must be hashable
- Hash must not change during lifetime
❌ Invalid:
{[1, 2]} # TypeError
3.4.4 Collision Handling
- Linear probing
- Perturb shift algorithm
- Resizes at ~2/3 capacity
📌 Interview killer:
Sets are faster than lists for membership because lists scan, sets hash.
📘 Module 3.5 — Dictionary (The Crown Jewel of Python)
3.5.1 Dict Internals (CPython ≥ 3.6)
- Compact dict
- Separate keys & values arrays
- Preserves insertion order
Indices Table → Entry Array (key, value, hash)
3.5.2 Why Dict Lookup Is O(1)
- Compute hash
- Jump to index
- Probe if collision
3.5.3 Resize Strategy
- Resize when load factor ~ 2/3
- Rehash all keys (expensive but rare)
3.5.4 Mutability & Hashing Rules
| Key Type | Allowed |
|---|---|
| int | ✅ |
| str | ✅ |
| tuple (immutable) | ✅ |
| list | ❌ |
| custom object | ✅ (if __hash__ stable) |
3.5.5 Dict Order Guarantee (Important)
Since Python 3.7:
dict preserves insertion order
📌 Interview trap:
This is a language guarantee, not an implementation accident.
📘 Module 3.6 — Mutability Matrix (Very Important)
| Type | Mutable | Hashable |
|---|---|---|
| int | ❌ | ✅ |
| str | ❌ | ✅ |
| tuple | ❌ | ⚠️ depends |
| list | ✅ | ❌ |
| set | ✅ | ❌ |
| dict | ✅ | ❌ |
📘 Module 3.7 — Performance Comparisons
Membership Test
x in list # O(n)
x in set # O(1)
x in dict # O(1)
Memory Usage
tuple < list < dict < set
When to Use What
| Scenario | Best |
|---|---|
| ordered, dynamic | list |
| fixed record | tuple |
| fast lookup | set |
| key-value mapping | dict |
📘 Module 3.8 — Advanced Interview Traps
Trap 1: Default Mutable Arguments
def f(x=[]):
x.append(1)
return x
Trap 2: Shallow vs Deep Copy
import copy
copy.copy()
copy.deepcopy()
Trap 3: Dict Views Are Dynamic
d = {1: 2}
keys = d.keys()
d[3] = 4
print(keys) # updates
📘 Module 3.9 — Coding Exercises (Mandatory)
Easy → Medium
- Detect duplicates using set
- Reverse dict mapping
- Merge two dicts with conflict resolution
- Flatten nested list
- Count frequency efficiently
Hard / Interview
- Implement LRU cache using dict + doubly linked list
- Custom hashable class
- Memory-optimized frequency counter
- Deep copy without
copy - Implement
OrderedDictlogic manually
📘 Module 3.10 — Internal CPython Source Reading (Optional PhD)
Files to study:
listobject.cdictobject.csetobject.c
📌 You don’t memorize this — you understand patterns.
🧠 Module 3 Mental Model (One Line Each)
- List → Dynamic array of references
- Tuple → Fixed array, cache-friendly
- Set → Hash table without values
- Dict → Optimized hash table with order
If you want next, I can:
- Convert this into printable PDF notes
- Add LeetCode-style problems
- Add CPython memory diagrams
- Add FAANG interview Q&A
- Or integrate it perfectly back into your A→Z course flow
Just tell me 🔥
Perfect question — this is exactly where Module 3 becomes truly PhD-level.
Below is a complete expansion of Module 3, covering everything that was missing:
✅ Module 3 (Extended)
Coding Exercises — Solutions
LeetCode-Style Problems
CPython Memory Diagrams
Inbuilt Data Structure Methods (with real use-cases & traps)
🧠 PART 1 — CPython Memory Diagrams (Very Important)
1️⃣ List Memory Diagram (Dynamic Array)
lst = [10, "hi", [1,2]]
lst ──► PyListObject
├── ob_refcnt
├── ob_type
├── ob_size = 3
├── allocated = 4
└── ob_item ──► [ ptr | ptr | ptr | NULL ]
│ │ │
▼ ▼ ▼
PyInt PyStr PyList
Key truths
- List stores references only
allocated > size→ amortized O(1) append- Inner list is separate object
2️⃣ Tuple Memory Diagram
t = (1, 2, 3)
t ──► PyTupleObject
├── ob_refcnt
├── ob_type
├── ob_size = 3
└── ob_item ──► [ ptr | ptr | ptr ]
✔ Fixed size
✔ No reallocation
✔ Hash cached (if hashable)
3️⃣ Dict Memory Diagram (Compact Dict)
d = {"a": 1, "b": 2}
PyDictObject
├── ma_keys ──► indices table
│ [ -1 | 0 | -1 | 1 ]
│ │ │
└── ma_values ──► entries array
[ ("a",1,h1), ("b",2,h2) ]
Why dict is fast
- Hash → index jump
- Probe only on collision
- Keys & values stored separately (cache friendly)
4️⃣ Set Memory Diagram
s = {1, 2, 3}
PySetObject
└── table ──► [ 1 | 2 | EMPTY | 3 ]
✔ Same hashing engine as dict
✔ No values → faster lookup
🧠 PART 2 — Module 3.9 Coding Exercises (Solved)
1️⃣ Detect Duplicates Using Set
def has_duplicates(nums):
seen = set()
for n in nums:
if n in seen:
return True
seen.add(n)
return False
Time: O(n)
Space: O(n)
2️⃣ Reverse Dict Mapping
def reverse_dict(d):
rev = {}
for k, v in d.items():
rev.setdefault(v, []).append(k)
return rev
{"a":1,"b":1,"c":2}
→ {1:["a","b"], 2:["c"]}
3️⃣ Merge Dicts With Conflict Resolution
def merge_dicts(d1, d2):
return {k: d1.get(k, 0) + d2.get(k, 0)
for k in d1.keys() | d2.keys()}
✔ Uses set union on keys
4️⃣ Flatten Nested List (Recursive)
def flatten(lst):
res = []
for x in lst:
if isinstance(x, list):
res.extend(flatten(x))
else:
res.append(x)
return res
5️⃣ Frequency Counter (Optimized)
def freq_counter(arr):
freq = {}
for x in arr:
freq[x] = freq.get(x, 0) + 1
return freq
✔ Avoids if x in dict
6️⃣ LRU Cache (🔥 FAANG Favourite)
from collections import OrderedDict
class LRUCache:
def __init__(self, cap):
self.cap = cap
self.cache = OrderedDict()
def get(self, k):
if k not in self.cache:
return -1
self.cache.move_to_end(k)
return self.cache[k]
def put(self, k, v):
if k in self.cache:
self.cache.move_to_end(k)
self.cache[k] = v
if len(self.cache) > self.cap:
self.cache.popitem(last=False)
7️⃣ Custom Hashable Class
class Point:
def __init__(self, x, y):
self.x, self.y = x, y
def __hash__(self):
return hash((self.x, self.y))
def __eq__(self, other):
return self.x == other.x and self.y == other.y
✔ Can be dict key / set element
8️⃣ Memory-Optimized Frequency (Tuple Keys)
freq = {}
for x, y in points:
freq[(x, y)] = freq.get((x, y), 0) + 1
✔ No object wrapper → faster
9️⃣ Deep Copy Without copy
def deep_copy(obj):
if isinstance(obj, dict):
return {k: deep_copy(v) for k, v in obj.items()}
if isinstance(obj, list):
return [deep_copy(x) for x in obj]
return obj
🔟 Manual OrderedDict (Conceptual)
class Node:
def __init__(self, k, v):
self.k, self.v = k, v
self.prev = self.next = None
✔ Dict → O(1) lookup
✔ DLL → O(1) eviction
🧠 PART 3 — LeetCode-Style Problems (With Insights)
🟢 Easy
Contains Duplicate
return len(nums) != len(set(nums))
Valid Anagram
from collections import Counter
return Counter(s) == Counter(t)
🟡 Medium
Two Sum
seen = {}
for i, n in enumerate(nums):
if target - n in seen:
return [seen[target-n], i]
seen[n] = i
Group Anagrams
res = {}
for w in strs:
key = tuple(sorted(w))
res.setdefault(key, []).append(w)
return list(res.values())
✔ Tuple key → hashable
🔴 Hard
Longest Consecutive Sequence
nums = set(nums)
best = 0
for n in nums:
if n - 1 not in nums:
cur = n
length = 1
while cur + 1 in nums:
cur += 1
length += 1
best = max(best, length)
return best
✔ O(n)
🧠 PART 4 — Inbuilt Methods (⚠️ Often Missed)
✅ LIST METHODS
| Method | Use |
|---|---|
| append | amortized O(1) |
| extend | bulk insert |
| insert | costly O(n) |
| pop | end is O(1) |
| remove | O(n) |
| sort | Timsort |
| reverse | in-place |
| copy | shallow |
✅ TUPLE METHODS
| Method | Use |
|---|---|
| count | frequency |
| index | search |
✔ Minimal API → speed
✅ SET METHODS
| Method | Use |
|---|---|
| add | insert |
| update | bulk add |
| remove / discard | safe delete |
| union | OR |
| intersection | AND |
| difference | – |
| issubset | ⊆ |
✅ DICT METHODS
| Method | Use |
|---|---|
| get | safe access |
| setdefault | grouping |
| update | merge |
| pop | delete |
| popitem | LIFO |
| keys / values / items | dynamic views |
🧠 FINAL INTERVIEW INSIGHT
Python performance is not magic
It is data structure engineering
If you understand:
- hashing
- mutability
- references
- resizing strategies
👉 You automatically crack Python interviews
🔥 Want Next?
I can:
- Turn this into printable PDF
- Add 100 more LeetCode problems mapped to DS
- Add CPython source-code walkthrough
- Add memory profiling labs
- Integrate this into your Python → AI → Spark journey
Just say the word 🚀
Excellent.
This is Module 3 – Part 2, where Python data structures stop being “containers” and start becoming problem-solving weapons.
This module maps directly to real interview questions (FAANG / product companies / data roles).
🧠 MODULE 3 (PART 2) — ADVANCED DATA STRUCTURES
dict internals · defaultdict · Counter · deque · heapq
3.21 dict — ADVANCED USAGE & INTERNAL BEHAVIOR
🔹 Why dict is so powerful
- Hash table with O(1) average lookup
- Extremely optimized in CPython
- Backbone of:
- Sets
- Objects
- Namespaces
- Caches
- JSON parsing
3.22 dict.get() vs Direct Indexing (INTERVIEW FAVORITE)
d = {"a": 1}
d["b"] # ❌ KeyError
d.get("b") # None
d.get("b", 0) # Default
📌 Use get() when key may not exist.
3.23 setdefault() — POWERFUL BUT DANGEROUS
d = {}
d.setdefault("x", []).append(1)
d.setdefault("x", []).append(2)
print(d)
Output:
{'x': [1, 2]}
⚠️ Trap:
- Default object is created only once
- Similar to mutable default arguments
📌 Prefer defaultdict for clarity.
3.24 defaultdict — INTERVIEW GOLD
from collections import defaultdict
d = defaultdict(list)
d["a"].append(1)
d["a"].append(2)
Why interviewers love it:
- Eliminates key-existence checks
- Cleaner, faster, safer
Common Patterns
Frequency count
freq = defaultdict(int)
for ch in s:
freq[ch] += 1
Grouping
groups = defaultdict(list)
for name, dept in employees:
groups[dept].append(name)
3.25 Counter — FREQUENCY MASTER
from collections import Counter
Counter("banana")
Output:
{'a': 3, 'b': 1, 'n': 2}
Key Operations
c = Counter("banana")
c.most_common(2) # [('a', 3), ('n', 2)]
c["a"] # 3
📌 Zero / negative counts allowed.
3.26 Counter INTERVIEW TRAPS
Counter("ab") == Counter("aabb")
❌ False — counts differ.
But:
Counter("ab") <= Counter("aabb")
✔ True — subset comparison.
3.27 deque — THE CORRECT QUEUE
from collections import deque
dq = deque()
dq.append(1)
dq.appendleft(2)
dq.pop()
dq.popleft()
Why deque beats list for queues
| Operation | list | deque |
|---|---|---|
| append | O(1) | O(1) |
| pop | O(1) | O(1) |
| pop(0) | ❌ O(n) | ✅ O(1) |
📌 Interview Line
Use
dequefor queues, not lists.
3.28 deque ADVANCED FEATURES
dq.rotate(1)
dq.rotate(-1)
Sliding window problems:
dq = deque(maxlen=3)
3.29 heapq — PRIORITY QUEUE (VERY IMPORTANT)
import heapq
h = []
heapq.heappush(h, 3)
heapq.heappush(h, 1)
heapq.heappush(h, 2)
heapq.heappop(h) # 1
📌 Python heap is min-heap.
3.30 MAX HEAP IN PYTHON (INTERVIEW CLASSIC)
Technique 1 — Negation
heapq.heappush(h, -x)
Technique 2 — Tuple
heapq.heappush(h, (-priority, item))
3.31 heapq TIME COMPLEXITY
| Operation | Time |
|---|---|
| push | O(log n) |
| pop | O(log n) |
| peek | O(1) |
Used in:
- Top-K problems
- Scheduling
- Dijkstra
- Median stream
3.32 COMPARISON TRAP WITH HEAPS
heapq.heappush(h, (priority, obj))
If priorities equal → Python tries to compare obj → ❌ TypeError
✅ Fix:
heapq.heappush(h, (priority, index, obj))
3.33 WHEN TO USE WHAT (INTERVIEW SUMMARY)
| Problem | Structure |
|---|---|
| Fast lookup | set / dict |
| Frequency | Counter |
| Grouping | defaultdict(list) |
| Queue | deque |
| Stack | list |
| Priority | heapq |
| Sliding window | deque |
🧪 PRACTICE — INTERVIEW STYLE (MANDATORY)
Q1 — Group Anagrams
["eat","tea","tan","ate","nat","bat"]
Expected:
[['eat','tea','ate'], ['tan','nat'], ['bat']]
💡 Hint: defaultdict(list) + sorted key.
Q2 — Top K Frequent Elements
nums = [1,1,1,2,2,3]
k = 2
💡 Hint: Counter + heapq.
Q3 — First Unique Character
s = "leetcode"
💡 Hint: Counter.
Q4 — Sliding Window Maximum
nums = [1,3,-1,-3,5,3,6,7]
k = 3
💡 Hint: deque.
Q5 — Check If Two Strings Are Anagrams
Without sorting.
💡 Hint: Counter or frequency dict.
🎯 INTERVIEW CHECKPOINT (CRITICAL)
You should now clearly explain:
✅ Why defaultdict is safer than setdefault
✅ When to use Counter vs dict
✅ Why deque is O(1) for both ends
✅ How heapq works internally
✅ Why Python heap is min-heap
✅ How to build max-heap
✅ Common heap comparison traps
If yes → you are interview-ready for Python DS questions.
🚀 NEXT STEP (CHOOSE ONE)
Reply with ONE number:
1 → LeetCode-level DS coding problems (stack, hash, heap, sliding window — full solutions)
2 → Module 4: Functions, *args, **kwargs, closures, decorators (deep)
3 → 25-question rapid interview drill on Module 3
You’re now operating at serious Python interview depth 🔥
Perfect.
Below is exactly what strong interviews look like:
1️⃣ LeetCode-level DS coding problems (with clean Python solutions + interview thinking)
2️⃣ 25 rapid-fire interview drill questions on Module 3 (data structures)
No fluff. No basics. Pure interview dominance.
🔥 PART 1 — LEETCODE-LEVEL DATA STRUCTURE CODING
(Stack · Hash · Heap · Deque · Sliding Window)
🟢 1. Valid Parentheses
(LeetCode 20 — Stack)
def is_valid(s: str) -> bool:
stack = []
mapping = {')': '(', ']': '[', '}': '{'}
for ch in s:
if ch in mapping:
if not stack or stack.pop() != mapping[ch]:
return False
else:
stack.append(ch)
return not stack
🎯 Interview focus
- Stack discipline
- Early exit
- O(n) time, O(n) space
🟢 2. Two Sum
(LeetCode 1 — Hash Map)
def two_sum(nums, target):
seen = {}
for i, num in enumerate(nums):
need = target - num
if need in seen:
return [seen[need], i]
seen[num] = i
🎯 Why interviewers love this
- Dict lookup O(1)
- One-pass solution
🟢 3. First Unique Character
(LeetCode 387 — Counter)
from collections import Counter
def first_uniq_char(s: str) -> int:
freq = Counter(s)
for i, ch in enumerate(s):
if freq[ch] == 1:
return i
return -1
🎯 Tests frequency counting + traversal order.
🟡 4. Group Anagrams
(LeetCode 49 — defaultdict)
from collections import defaultdict
def group_anagrams(strs):
groups = defaultdict(list)
for word in strs:
key = tuple(sorted(word))
groups[key].append(word)
return list(groups.values())
🎯 Follow-up
- Why tuple, not list → hashable
🟡 5. Top K Frequent Elements
(LeetCode 347 — Counter + Heap)
from collections import Counter
import heapq
def top_k_frequent(nums, k):
freq = Counter(nums)
return heapq.nlargest(k, freq.keys(), key=freq.get)
🎯 Interview insight
nlargestavoids manual heap logic- O(n log k)
🟡 6. Sliding Window Maximum
(LeetCode 239 — deque)
from collections import deque
def max_sliding_window(nums, k):
dq = deque()
res = []
for i, num in enumerate(nums):
if dq and dq[0] <= i - k:
dq.popleft()
while dq and nums[dq[-1]] < num:
dq.pop()
dq.append(i)
if i >= k - 1:
res.append(nums[dq[0]])
return res
🎯 This is a killer interview problem
- Monotonic deque
- O(n) time
🔴 7. Find Median from Data Stream
(LeetCode 295 — Two Heaps)
import heapq
class MedianFinder:
def __init__(self):
self.small = [] # max heap
self.large = [] # min heap
def addNum(self, num):
heapq.heappush(self.small, -num)
if self.small and self.large and -self.small[0] > self.large[0]:
heapq.heappush(self.large, -heapq.heappop(self.small))
if len(self.small) > len(self.large) + 1:
heapq.heappush(self.large, -heapq.heappop(self.small))
if len(self.large) > len(self.small):
heapq.heappush(self.small, -heapq.heappop(self.large))
def findMedian(self):
if len(self.small) > len(self.large):
return -self.small[0]
return (-self.small[0] + self.large[0]) / 2
🎯 Senior-level heap problem
⚡ PART 2 — MODULE 3 RAPID INTERVIEW DRILL
25 Questions (Answer mentally in <5 sec each)
1. Why is list.append() amortized O(1)?
👉 Over-allocation strategy.
2. Why is insert(0, x) slow?
👉 Requires shifting all elements → O(n).
3. Why does [[0]*3]*3 break?
👉 Same inner list reference repeated.
4. Difference: copy.copy() vs copy.deepcopy()?
👉 Shallow copies references, deep copies objects.
5. Why are tuples hashable but lists not?
👉 Tuples immutable, lists mutable.
6. Can a tuple contain a list?
👉 Yes, but tuple becomes unhashable.
7. Why is set lookup faster than list lookup?
👉 Hash table vs linear scan.
8. Why can’t list be a dict key?
👉 Mutable → hash instability.
9. Why do True and 1 collide in dict?
👉 True == 1 and same hash.
10. When to use defaultdict?
👉 Grouping / accumulation.
11. Why setdefault() is dangerous?
👉 Mutable default reused.
12. What happens on hash collision?
👉 Probing + equality check.
13. Since which version dict is ordered?
👉 Python 3.7+ (language guarantee).
14. Why deque is better than list for queues?
👉 O(1) pop from both ends.
15. What is deque(maxlen=k) used for?
👉 Sliding window problems.
16. Python heap is min-heap or max-heap?
👉 Min-heap.
17. How to implement max-heap?
👉 Push negative values.
18. Heap push/pop complexity?
👉 O(log n).
19. Why heap comparison sometimes fails?
👉 Equal priority → object comparison.
20. Fix heap comparison error?
👉 Push (priority, index, item).
21. When to use Counter over dict?
👉 Frequency counting.
22. Is Counter ordered?
👉 No guarantee (though insertion-like behavior exists).
23. Difference between pop() and pop(0) in list?
👉 O(1) vs O(n).
24. Why slicing a list is O(n)?
👉 Creates a new list.
25. Most used DS internally by Python?
👉 dict.
🏁 YOUR CURRENT LEVEL
If you:
- Can solve sliding window max
- Can explain heap median
- Can answer 15+ drill questions instantly
👉 You are strong Python interview-ready.
🚀 NEXT STEP (CHOOSE ONE)
Reply with ONE number:
1 → Module 4: Functions, *args, **kwargs, closures, decorators (deep, interview-heavy)
2 → OOP mastery (classes, inheritance, MRO, dunder methods)
3 → Full Python mock interview (60 mins, real format)
This is now elite-track Python prep 🔥